A low-cost, open-source framework for tracking animals in aquatic ecosystems

Fritz A. Francisco, Paul Nührenberg, L. Alex Jordan

Abstract

Common methods for tracking animals under water exist, but frequently involve costly infrastructure or the manipulation of the animals [1, 2]. We present a framework solely relying on low-cost cameras, combining structure-from-motion (SfM) and deep-learning for object detection. Implementing our method allows highly accurate tracking of animal positions and body postures in various scenarios, for example single individuals in a complex environment or schools of fish.

мор

Background

Markerless animal tracking for behavioral analyses has become commonly available, however, these techniques often lack the robustness for deployment in natural scenarios [4].

Recording animal behavior in aquatic environments has further limitations (e.g. GPS does not penetrate water, expensive equipment required) [1, 2].

As an alternative, we provide a semi-automated workflow, that guides the user through the required steps using computer vision and object detection methods.

Methods

- Transfer-learning an instance segmentation model (Mask R-CNN) (1)with custom datasets [4]
- SfM reconstructions of the visual scene using COLMAP [5] (2)
- Generating trajectories from Mask R-CNN predictions with optional, (3) contour-based animal postures
- Triangulation of 3D trajectories (4)

Here, we showcase our method with two example datasets:

- Fish school (*Lamprologus c.*, > 10 individuals), recorded with 12 GoPro Hero 4 (1) cameras, Lake Tanganyika (see Fig. 2)
- Calibration wand (0.5 m) in a complex environment, recorded with four (11) GoPro Hero7 cameras, Corsica (see Fig 1.)

Dataset (II) allowed ground-truth inference, resulting in marginal tracking errors considering the scale of the reconstruction (25 x 10 m):

- Calibration wand end-to-end distance: 0.011 m RMSE
- Camera-to-camera distance: 0.007 m RMSE

Discussion

Figure 1. Dataset (II) with COLMAP dense reconstruction, calibration wand visualized at 0.5 Hz.

[1] Krause, Jens, et al. "Reality mining of animal social (2013): 541-551.

systems." *Trends in ecology & evolution* 28.9

telemetry transmitters in fish: how much have we [2] Jepsen, Niels, et al. "Surgical implantation of learned?." Aquatic Telemetry. Springer, Dordrecht, 2002. 239-248.

Graving, Jacob M., et al. "Fast and robust animal pose estimation." *bioRxiv* (2019): 620245. [3]

[4] He, Kaiming, et al. "Mask r-cnn." *Proceedings of* the IEEE international conference on computer vision. 2017.

[5] Schonberger, Johannes L., and Jan-Michael Frahm. "Structure-from-motion revisited." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

- Our framework allows non-invasive, yet detailed tracking of aquatic organisms in their natural habitat.
- High-resolution trajectories enable the application of behavioral analyses that so far required standardized laboratory environments.
- Environmental conditions (e.g. underwater lighting, high turbidity) that impede tracking can be compensated with additional animal tagging.
- Our method is cheap in application and deployable with minimal investment due to consumer grade cameras and open-source software.

Max Planck Institute of Animal Behavior

Universität Konstanz

This project was funded by the DFG Centre of Excellence 2117 "Centre for the Advanced Study of Collective Behaviour" (ID: 422037984)

paul.nuehrenberg@uni.kn

ajordan@ab.mpg.de