Technical support for trex.run

Fritz Francisco
fritz.francisco@hu-berlin.de

November 23, 2021

1l trex.run

trex.run is a tracking software developed and maintained by Tristan Walter and is designed
to track multiple animals from two dimensional images. It is best applied to simple, standard-
ized laboratory footage where both illumination and background are maintained constant
and only the object of interest move.

A good documentation and explanation of the usage cases can be found here:

@A https://trex.run/docs/contents.html
O https://github.com/mooch443/trex

1.1 Installation

Before getting started, a few things need to be set up. The most important components for
using trex.run are a correctly instantiated conda environment and the .settings file.

1.1.1 conda

trex.run is implemented in C++ and Python. To get started with Python it is recommended
to install an environment manager. An environment manager lets you create a virtual box
within your system, in which you can install a variety of Python dependencies and packages
without disturbing, or interacting with the main system. These environments can be used
with Python, R, Java etc. One of the most common package management systems and en-
vironment management systems is conda. This can be installed following these instructions
(under "Regular Installation"):

conda installation

Once coda is successfully installed trex.run can be installed! For ease of use it is recom-
mended to navigate to the following website https://trex.run/ and use the command sug-
gested there. This is based on the distribution which is automatically recognized through
your browser. Otherwise, detailed installation instructions can be found on the official web-
site and in the corresponding documentations as well. In most cases it should suffice to run
the following command from within the terminal, once conda was correctly set up:

1 conda create -n tracking -c trexing trex

The conda environment can then be accessed through a Terminal (Linux, OS) or the Anaconda
Prompt (Windows). In both cases the environment is opened, once conda was successfully
installed by executing the following command:

1 conda activate MyEnvironment


fritz.francisco@hu-berlin.de
https://github.com/mooch443
https://trex.run/docs/contents.html
https://github.com/mooch443/trex
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://trex.run/

Here, MyEnvironment corresponds to the specific name of the environment created, which
in this case is named tracking. Therefore, the corresponding command for the trex.run
installation would be:

1 conda activate tracking

1.1.2 The .settings file

The .settings file contains all project specific parameters required for converting and track-
ing, using trex.run. These are set in the .settings file, which is a common .txt file where
the ending is replaced with .settings. This file is referenced during all further processes,
which is why it needs to be created or copied from existing projects and adjusted to match
ones needs prior to using trex.run. The settings file should NOT contain any leading # sym-
bol, since this will hinder the functionality of it! An example is shown below:

Example.settings

analysis_range = [-1,-1]

auto_minmax_size = false

average_samples = 200

averaging_method = "mode"

approximate_length_minutes = 10

blob_size_ranges = [0.2,3]

color_channel = 1

cam_undistort_vector = [-1.950518790120431001e-01, 4.970165099425187250e-01,
3.643495005380451360e-03, 9.237946710627080319e-04, -2.257615797069292718e+00]
cam_matrix = [5.322950685033362788e+03, O,

1.7471569208777091635e+03, 0, 5.319752552141406341e+03, 1.757797369342347565e+03, 0, 0, 1]
cam_undistort = true

cam_resolution = [3400,3400]

cam_circle_mask = true

cm_per_pixel = 0.022

crop_offsets = [0,0,0,0]

correct_lumincance = true

enable_live_recording = true

frame_rate = 15

image_invert = false

recognition_enable = true

meta_species = "Poecilia formosa"

max_speed = 10

meta_real_width = 76

output_posture_data = true

output_centered = true

threshold = 14

track_threshold = 14

track_max_individuals = 4

track_max_speed = 10

Prior to tracking a conversion step is done (see subsection 1.2 Getting Started) which heavily
relies on the parameters threshold and blob_size_ranges. The functionality and further
description can also be found in the official documentation (see below).

For tracking, max_speed (maximum expected speed of the objects in cm/s), track_max_speed
(maximum speed to consider feasible during tracking cm/s), meta_real_width (real width
of observed image in cm) and track_max_individuals (number of expected individuals to
track) should be set accordingly. Further, it is vital to incorporate a correct measurement of
the parameter cm_per_pixel. This is easiest done by measuring a know distance in the field
of view (taken from a snapshot of equivalent dimensions/resolution as the original image)



and converting it to cm/px. It is recommended to take a snapshot using VLC and measuring
it in pixel values using Fiji/lmage). All previously discussed parameters are important since
they are used to calculate possible matches for individuals and refine outliers during tracking.
If the camera was calibrated calibration parameters (cam_undistort_vector and cam_matrix)
can be set as well. When cam_undistort is set to true this enables the images then to be
undistorted during conversion, which can greatly improve the tracking quality. The camera
calibration can be done by using a common calibration checkerboard, with which the re-
quired calibration parameters (cam_undistort_vector and cam_matrix) can be calculated.
This is done by using a video recorded from the camera to be calibrated, in which the calibra-
tion checkerboard was moved in front of the camera. This video, in turn serves as input to
the script found here which results in all camera parameters being calculated and returned.
Once all parameters have been set accordingly the .settings file should be saved on the
local machine. It is important to make sure trex.run accesses the correct .settings file,
since it will otherwise revert to the default settings. This can be checked by looking at the
terminal output produced after running any command. There, it is explicitly stated which
.settings file was used.

For further references on how to correctly set up the .settings file please follow the official
documentation.

1.2 Getting Started

Before using trex.run the conda environment should be activated. This is commonly done
by running the command:

1 conda activate tracking

Following this step, the general workflow is made up of two steps:

1. Conversion of the RAW video material, where most common video formats, such as .avi
and .mp4 are supported as input. These are converted to a processed video file (.pv).

2. In a second step the individual objects are tracked, using the .pv file as input

It should be noted that for all of the following steps it is highly recommended to used ab-
solute paths (i.e. C:\Users\lab\Documents\test\config.settings instead of .\config.
settings)

Conversion is done using the command:

1 tgrabs

2 -i /path/to/input.mp4 # raw video

3 -s /path/to/Example.settings

a -output_dir /path/to/output/directory

Once the video files are converted and the preliminary results and detections are satisfactory
the tracking can be done using:

1 trex

2 -i /path/to/converted_input.pv #.pv file
3 -s /path/to/Example.settings

4 -output_dir /path/to/output/directory

Both previously described steps can be done using the General User Interface (GUI) as well
and following the descriptions. This is done by running


https://www.videolan.org/vlc/
https://imagej.net/software/fiji/
https://docs.opencv.org/4.x/checkerboard_radon.png
https://gist.github.com/fritzfrancisco/5a5de81d479576cf1e39de0a5d75c6d9
https://trex.run/docs/contents.html
https://trex.run/docs/contents.html

1 tgrabs

or

1 trex

Tracking with trex.run is done by applying background subtraction, detection blobs and
tracking these. In a further step the individual identity can be estimated and maintained by
training a deep neural network on the individual data. This way, individuals are recognized
in each frame and detections merged, based on their overall similarity. The algorithm bases
it’s assumptions on the fact that only track_max_individuals should be detected in any
instance and that these individuals can only move max_speed.

To train the network and track the individuals using the visual identification this needs to be
set using the GUI (top left Menu button) or while initiating trex.run from the command line:

1 trex

2 -i /path/to/converted_input.pv

3 -s /path/to/Example.settings

a -output_dir /path/to/output/directory

5 -auto_train # train network

6 -auto_quit # quit once traiend and applied

7 -no_window # optional when running without interface

Here, the parameters auto_train, auto_quit and no_window are specific to using trex.run
in the command line interface (CLI/Terminal) and applying batch processing (automatically
apply to multiple files). For tracking single individuals or when visual identification is not
necessary, setting the flag enable_live_recording to true is sufficient. This will already
generate and save tracking output during the conversion step. This approach will however
lead to faulty identification if more than one individual are observed or if the detections are
very unreliable (for example with other moving object in the image).

1.3 Individual Recognition

During this step a artificial neural network is trained to recognize the individuals in the video
and assign them with consistent individual identities over time. It is to be mentioned that
this step requires a graphical processing unit (GPU) in order to run sufficiently. Further, the
track_max_individuals flag is important for the the algorithm to estimate the correct num-
ber of individuals. These flags can be set directly in the terminal when executing the trex
command or added to the .settings file.

To run the visual identification and tracking from the terminal the following command can be
executed:

1 trex -i /path/to/input_file.pv # This is the .pv file NOT the video

2 -s /path/to/my_personalized.settings

3 -output_dir /path/to/output/directory/

4 -track_max_individuals X # Number of individuals
5 -auto_train

6 -auto_quit

The same process can also be done using the graphical user interface (GUI). Here, one needs
to click on
1) Menu > visual identification



2) Menu > autocorrect > Yes
3) Menu > autocorrect > No

This should start the process of determining individuals based on pixel values, learning these
differences and applying them to consecutive frames to create consistent tracks. This pro-
cess is time consuming and computationally expensive (CPU & GPU) and will likely take a
while.

1.4 Manual Correction

It is recommended as best practice to manually approve all tracking results once these are
obtained. This is done by opening the .pv files as when tracking them using trex. It is
important in this step that the .settings file parameters match those used for tracking. The
output directory should be set to the location of the trex output generated during tracking.

1 trex

2 -i /path/to/converted_input.pv

3 -s /path/to/Example.settings

a -output_dir /path/to/output/directory

Once trex is opened in the GUI navigate to the Menu > visual identification. This should
start training the neural network on the detected individuals. However, if the visual identifi-
cation had already been done and the correct output directory, containing this information,
was correctly given by setting the output_dir flag the visual identification only needs to be
loaded and applied:

1) Menu > visual identification > Load weights
2) Menu > visual identification > Apply

Once the visual identification is applied the identities need to be corrected. The first step
is to do this automatically by navigating to Menu > auto correct > Yes. After waiting for
this step to finish (% progress is indicated in the bottom left of the image), one must do the
same step Menu > auto correct but now selecting the option No . After this the identities
indicated as numbers over each fish should be either red, green or white corresponding to
the quality and success of tracking (red being worst and green being best).

Once visual identification has been applied the individuals need to be manually approved.
This is done by visually following the individuals and checking for identity switches. This
means, cases where the identity number is carried over to an individual that is not correct.
This commonly happens when individual overlap or briefly disappear. To navigate through
all possibly erroneous switches one can use the "M" (next) and "N" (previous) key on the
keyboard. Then the faulty individual is selected by clicking (left mouse button) on it and the
correct ID is selected by navigating to Match at the top of the GUI. This must be done for all
individuals and every erroneous identity switch. Once completed the progress can be saved
by using Menu > save state. It is important to save frequently to limit loss of progress in
case of a unexpected break of the software or forgetfulness. The state can be loaded during
a later stage using Menu > load state equivalently.

1.5 Best Practice

For best practice and most convenient workflow it is recommended to follow the following
steps:



1. Initially set up conda environment once (subsubsection 1.1.1 conda).

2. Copy original .settings file and only work with the copy (subsubsection 1.1.2 The
.settings file).

3. Always make sure the parameters:

¢ threshold

* blob_size_ranges

* max_speed

* meta_real_width

* track_max_individuals

* cm_per_px
are set correctly.
4. Copy all files (.pv and trex output) and only work with copies.
5. Check terminal output. The logged information printed there is VERY helpful!

6. Do NOT restart visual identification if it has already been done! This will result in losing
the progress when not working with copied files.

7. Save frequently and create backups. Especially when working on the manual correc-
tions (subsection 1.4 Manual Correction).

2 Useful commands

As some might be working on linux computers or may encouter a linux command line from
time to time it may be usefull to know some basic linux commands. Some of these com-
mands also work within conda environments:

1s : [“list”] lists all files in the current directory

cd : [“change directory”] changes into the directory following the command. If no
directory is specified it will change into the basal home directory

cp : [“copy”] copy specified files to designated directory. cp is followed by the file-
names to be copied and then the designated directory

mv : [“move”] moves specified files to designated directory which does not replicate
them. mv is followed by the filenames to be moved and then the designate directory

pwd : [“print working directory”] shows the current directory (i.e. dir in Windows)



	trex.run
	Installation
	conda
	The .settings file

	Getting Started
	Individual Recognition
	Manual Correction
	Best Practice

	Useful commands

